

Tutkimuksesta polttomoottorieksperttejä

Seppo Niemi Pekka Nousiainen Mika Laurén

Research of internal combustion engines (ICE)

- Background and motivation
 - From the mid-1990s onwards, the ICE Laboratory developed to enable scientific research
 - To make it possible to serve the companies within the ICE field
 - To create a modern learning environment for the students

Targets of the ICE R&D

- Development of low emission diesel and gas engines
- Improvement of energy economy of Internal Combustion Engines
- After-treatment systems research
- Research and development of alternative fuels
- Modeling and simulation of ICEs
- Scenarios on engine and fuel development plus energy economy
- Expert services
 - Consultancy, documentation, etc.
- Education of ICE Technology

Main clients and partners

- AGCO Power
- Wärtsilä Finland
- Ecocat
- Valtra
- Proventia Emission Control
- Fuel producers
- Lubricating oil companies
- University of Vaasa
- University of Oulu
- Åbo Akademi University
- Tampere University of Technology
- Partner in
 - The FCEP research program of Cleen Ltd
 - The TREAM project

Laboratory facilities

Engine test beds

- Four Schenck-Horiba eddy-current dynamometers
 - Two ready for transients

AVL indicating systems

Gaseous emissions

- NDIR (CO, CO₂)
- FID (HC)
- CLD (NO_x)
- Paramagnetic O₂
- FTIR
 - 20 compounds (e.g. CH₄, NH₃)
- Electrochemical cells
- Laser-based NH₃ indicators
- NO_x sensors

Smoke

- AVL 415 S
 - Heated, unheated
- Opacimeters

Particle size distributions

- Dekati ELPI
- Thermodenuder
- Pegasor

Particle mass

- Dekati FPS
- Dekati ejector diluters
- Gravimetric impactors
- AVL Micro Soot Sensors

Staff

- Laboratory Engineer
- Three (3) Research Engineers
- One (1) Mechanic
- Five (5) Senior Researchers
- Thesis workers
- Trainees
- Project workers

Modus operandi

- Each research engineer responsible for the R&D work of his or her own test bench
 - One or more students as assistants
 - Thesis workers, or
 - Trainees
 - Research engineers instruct the students and tutor them in results analyses
- Senior researchers
 - Plan and sell projects
 - Run and develop the laboratory operation
 - Supervise the theses and revise the reports
 - Publish results
- Younger students make minor project works within the ICE courses

Some results

Miller timing and two-stage turbocharging

Matching compressors for two-stage turbocharging

Particle number emissions, engine generations

PM number, biofuels

Biofuels

- DFO, Diesel Fuel Oil
- AFME, Animal derived Fatty acid Methyl Ester
- UCO, Spent Cooking Oil

BMEP, bar

Particle filters

Charge pressure and PM mass in transients TURKU UNIVERSITY OF APPLIED SCIENCES

Scrubber development

Engine modeling and simulation

Revenues

Theses, reports and publications

- Theses
 - Barely 50 Bachelor of Engineering
 - One Master of Engineering
 - One Master of Science
 - One Licentiate of Technology thesis
- Publications
 - Approximately 30 international
 - A few domestic articles and presentations
- Several reports based on younger students' project works

Conclusive notes

Experiences

- Between the industry and university, good personal relationships necessary for successful R&D cooperation
- A certain time required to create confidence
 - High-quality results required
 - International publications as proofs
- Employment opportunities of graduated students very favorable
 - Systematic working within the real projects, becoming more challenging phase by phase

Future

- Increased attention to students'
 - Basic knowledge of natural sciences
 - Physics
 - Chemistry
 - Thermodynamics, etc.
 - Scientific information retrieval
 - Theory and articles should also be read!
 - Massive reading forms the basis for the competence
 - Technical writing ability
- In total, the future looks bright
 - Companies continuously willing to co-operate
 - Increased number of students to energy technology
 - New laboratory premises under construction

Thank you

Pulse turbocharging

Heat balance versus NO_x level

PM number, effect of injection pressure

Miller timing

PM number, effect of injection pressure

Biofuels

PM number, biofuel and filter

SCR performance at different temperatures TURKU UNIVERSITY OF APPLIED SCIENCES

HC-SCR development

